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Practical implementation of error estimation for the correlation dimension
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We discuss the statistical error in the calculation of the sample correlation integral from a finite sample of
points. For this purpose we introduce an estimator of the covariance matrix of these estimators. The application
of the method is described and it is shown that only small modifications to a standard Grassberger-Procaccia
algorithm are necessary. Testing the method with 100 independent runs ofriba siestem, we show that the
errors obtained for the correlation integrals are in good accordance with the sample error. These results are
extended to the application to time-continuous systems, in our case the Lorenz system.

PACS numbsd(s): 02.50—r, 07.05.Kf

I. INTRODUCTION common technique to derive error estimates for the fit pro-
cedure, if the errors for the underlying data points are
The calculation of correlation dimensions via the sampleknown; see, e.g[5]. These data points in our case are the
correlation integral has gained widespread attention over theample correlation integrals ({r,d), which are estimated
last decade. However, little is known about the error of thefrom the given time series. If the underlying data are pro-
obtained quantities. Our goal is to provide reasonable confiduced by a sufficiently mixingi.e., chaoti¢ dynamical sys-
dence intervals by a generalized least squares method. Wem, then the difference between th@mple correlation in-
wish to emphasize that we deal with the statistical error otegral and the correlation integral of the distributigay
the correlation integral only. Although by doing this we con- (which would result from an infinitely long sample of the
sider error sources such as time correlation and lack of datttractoj is approximately normally distributed with zero
points, other sources of error, such as edge effects, are notean. The variance can be estimated on the basis of the
involved. covariance matrix of th&€(r,d). For a wide class of sys-
There have been previous attempts to give error estimatdems with exponentially decreasing correlatiéi, this result
[1-3], but unfortunately these methods normally require acan be proven rigorously. At this point it should be men-
very large data set, or multiple realizations of a system. Irtioned that normality of the error distribution is not a premise
practice, it is often not possible to meet these conditions. Af the least squares fit. Nonetheless, the key to error estima-
system may not be stationary over a long time, or only dion of thecorrelation dimensioris an understanding of the
limited sample of information on the system may be avail-variance of theCy(r,d), which is given by the covariance
able. Therefore, we wish to predict the confidence intervamatrix of Cy(r,d).
for the dimension estimate for a single limited data set. First, we review the standard procedure to obtain a dimen-
In the second section, we describe the practical implesion estimaté4]. In general, we use a sample of an attractor
mentation of an algorithm to estimate the covariance matriXA, which is produced by an embedding procedure. Given a
of the correlation integral on the basis of the pointwise cor-scalar time seriesxg,x,,...), this is typically achieved by
relation integrals. Only a moderate modification of the stanthe Takens delay methdd],
dard Grassberger-Proccacia algorithihis necessary to ob-
tain reasonable error estimates for the correlation integral Xi = (X ,xi+T,...,xi+(d,l)T)eRd,
and the dimension estimates, respectively.
The third section includes a test on numerically simulatedvhereris the so-called delay time amtidenotes the embed-
data. At first, we produced 100 independent runs of theding dimension.
Henon system, each containing 10 000 poifesd a shorter Geometric and dynamical information of the distribution
version of 1000 points and calculated the correlation inte- w4 can be derived from the correlation integral
gral, the correlation dimension, and the variance, respec-
tively. Then we compared the variance of the 100 indepen- )
dent results with the variance estimated for a single run.pThe Cpulr,d): :f f h(%,x")dug(X)dpq(x"), @
same procedure is then applied to the Lorenz system, i.e., a
time-continuous system. We conclude that it is possible tavhereh(x,x’)=6(|x—x’||—r) and @ is the Heaviside func-
obtain reasonable error estimates and confidence intervals fton. ||x—x’|| denotes the Euclidiaor any other suitabje

the correlation integrals and dimension. distance ofx and x’. Quantities given by Eq(l) are esti-
mated by
Il. ESTIMATION OF CORRELATION DIMENSION 1 N N
The outline of the problem of finding statistical error es- Cn(r,d)= N(N—1) ;l = h(xi.Xj). 2
i

timates for the correlation dimension is as follows. It is a £
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For the relation ofC(r,d):=limy_..Cy(r,d) tor andd, yet unknown matrice®® and Q P especially can be de-
Grassberger and Procac€®] found that in many cases there scribed easily byd(r,d) andBy(r,d,i):
are real numbersy>0 and K,>0 such that C(r,d)

~r” exp 92 asr—0 andd—x, leading to P(ry,dp,r,dy)

logC(r,d)=v logr —hd+C+ &(r,d); 3 t N—k
v is called the correlation dimensioh, is an entropylike :k;t N—k 121 [Bn(r,d1,1)Bn(rz,dz.1+k)
guantity related td,, C is a constant term, ané(r,d) is a U ) U (T, dy)]. )

(hopefully small nonlinear remainder. This model, although

;peprcoapsréa'g I;T Z(Eagli!j’egingit;zrgzz r:;)::]mtl;rTg Orrc)r?/éfigi\llgr'[he notatiorr;, d; illustrates the fact that we want to fit the
- ; P model(3) to a scaling region, which expands over a range of
gence forh by replacing log with log(r/\/d) [9]. i 1 ol e e embedding dimensiong,
Fitting a model(3) to given data point$2) is typically =1 'S’ that’ havre’ yet to be chosen. For example é’scal-
solved by a least squares fit. This procedure not only pro e d : '

) ) . ing region over four dimensions with ten radii each will
vides estimates for the parameterd, andC but also gives leave us with a(40x40) covariance matrix, and, respec-
estimates for the variance of the fitted parameters: 5 ' '

tively, a (40x40) matrix for P.
var(v,h,C)=[(M'M)~IMIV[(MM)~IM1T.. 4 . As we ment|one<_j earlier, the .t|medenotes a Q|st_ance in
i )=I( ) IVI( ) ] @ time after which pairs; ,x;) are independent fdi —j|>t.
Here the matri®/ denotes the covariance matrix of the loga- 1"€ second sum in E@g) is therefore some sort of “corre-
rithmic correlation integrals, ant! =(logr,—d,1) is fre- lation term” between the pointwise correlation integrals
quently called thedesign matrix To obtain error estimates Bn(r1.d1.i) and shifted pointwise correlation integrals
for the correlation dimensiom and the entropy terrh, we ~ Bn(r1,da,i+1). It takes the form of an autocorrelation func-
have to find an estimator for the covariance mabfix tion of the By(r,d,i). Here again the importance of teim
Finding an estimator for the covariance of 18g(r,d) is becomes obvious. For a reasonable estimate of the covari-
a standard procedure of statistics. At this point we want tg1Cc€ matrix, it is necessary to sum up all the right-hand sum
give the result(for details seq10]). The estimator for the te€rms in(8), which have not yet saturated to zero. With in-
covariance of the correlation integral is given in terms of thecreasing time distande, however, these terms will become

two matricesP and Q: smaller and smaller, which justifies the fixing of a “cutoff”
timet. In practice the “correlation term” may oscillate with
K=[1+4(1+2t)N"1]4N"P—N"2Q. (5)  decreasing amplitude around zero for a long time. However,

we observe that the partial sur®(r,,d,,r,,d,) will
In the next section, we describe the practical calculation ofonverge faster because of the decreasing amplitude of the
the matriced® andQ. The relation betweeW in Eq.(4) and  right-hand sum S NKBN(ry,dy,i)By(r,dp,i+K)

K in Eq. (5) is given in Eq.(10). —Up(rq,d7)Up(r5,d5)]. The matrixP therefore represents
the sum over the “correlation term” of the pointwise corre-
IIl. IMPLEMENTATION OF THE METHOD lation integrals fOYIk|$t, while all other term$k|>t do not

significantly change the surt8). To conclude, the calcula-
The basis of the estimation of the correlation integraltion of P is straightforward. It consists simply in the evalu-
C,(r,d) [Eq.(1)] is thesample correlation integral ((r,d)  ation of the pointwise correlation integrals and the execution
[Eq. (2)]. If the underlying system possesses a nonvanishingf sum (8). R
time correlation, the ternCy(r,d) has to be corrected by  The still missing correction terr® can be estimated by
excluding pairs i(,j) that are closer in time than a specific

timet. This correction, which was first introduced by Theiler R 1 N ¢
[11], leads to a modified version of the sample correlation ~ Q(ry,d;,rp,dy)= =N > X [hrvd)
integral TN =1 pa=—t
[j—i|>3t
1 N X(%i X)) h2%) (X4 5 Xi+.q)
Uyn(r,d)= h(x; ,Xx:).
M= NNz A Ay M) SUNrL DU )], (©)

i
©) where7(N,t)=(N—3t—1)(N—3t) denotes the number of

Note that the second sum represents bintwise correla- all relevant pairs in9). We concentrate on the explanation of

tion integrals the diagonal terms ifB). Again, we concentrate on the right-
hand sum.Q(r,,d;,r,,d;) measures the joint probability
N that if |[x;—x;| is less thanr,, then also the distance
Bn(r,d,i)= N—2i-1 2 h(xi,X;)- (7) |>_(i+p—>_<j+q| is less tharr,. In the case of a dynamical sys-
“Jﬁim tem, the poini + 1 is the “next” point on the trajectory; i.e.,

if the pair (x;,X;) is close, it is likely that also the respective
These pointwise correlation integrals will be the basis for the'neighbors™ on the trajectoryX; , 1,X; ;) are also close to-
estimation of the covariance matrix @& ,(r,d). As de- gether. The exact behavior is for the diagonal elempnts,
scribed in the preceding section, the estimétdncludes the  described by the Lyapunov exponents. The restriction on the
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A. Test with independent realizations

We now come to numerical tests of the method. First we
want to test the procedure by comparing the results with a
sample of 100 independent runs of two test systems. These
are the Heon system(standard parametera=1.4 and
b=0.3) and the Lorenz systerfstandard paramete&= 10,

FIG. 1. (a) Points §; ,x;) on different trajectories, within radius R=28, andb=%). Our goal is to compare the mean and
r. Respective neighborhood gf; : circles, points that contribute to  standard deviations of the 100 runs with the estimated values

the correction term; triangles, points that have a distance greatgjptained from the individual runs. At first we use noise-free
thanr and therefore do not contribute to the correction tetny. data.

Lines indicate the pairs that contribute to the correction term within
the chosen “cutoff” timet.

(b) A +t

1. Henon system

diagonal terms of (99 makes it easy to evaluate - For the Heon system we c.ompute_ the  sum
Q(rq,dq,r4,d;). (The covariance matrix that is obtained by P(r,d; r5,dy) _[see. Eq(8)] in order to.f|nd. a sunaple value
that procedure has the form Kfon the diagonal and follows for t. As seen in Fig. 2, the correlation is practically zero
the structure oP everywhere else. It is denotéd ) When- from t=10 on. Also, the sum of the correlation terms satu-
ever a pair X; ,;) is found to be closer than i.e., whenever rates to a fixed value. This i§ hot surpris_ing, as the underly-
it will be counted in the original calculation d8\(r,d,i), Ing system shows no longtime correlations, I-€., the same
the “surrounding” (x;..,.X;,,) Must be searched for pairs behavior can be observed for the autocorrelation of the time

that fulfill the condition|x;  ,— ;4| <r. The described situ- seriehs itself. leul h lati . |
ation is illustrated in Fig. 1. This is a dynamical interpreta- - T Zn ‘zj"e c(:jaAcu atg tde Cﬁ.”ﬁ at'o? Integra
tion of P and Q, but their justification is entirely based on (r1.di.ro, .2) and Q(ry, 172, 1) (which we from now
statistical consideratiorfd.0]. on denote s_|mpI3P andQ) V\_nt_h N=10 000 a_1ndN= 1000
We have now obtained estimates f:?nandé by making and r; for i=15 to 3.5 (gn_nng I range of
use of the standard procedure to estimate the pointwise cof1s~ O_.0Q1.t0r35= 0.067 in units °f.9'°b‘?" attractor sigéor
relation integraBy(r,d,i). Finally, we have to get the cova- each individual run. The embedding dimension for the 100

riance matrix of the logarithm oE(r,d). A Taylor expan- 'Uns is fixed to 4. Since the dimensiahis now a fixed
sion leads to the covariance matrix of l&yj(r,d)] parameter, the termd in our model is included in the con-
T stantC. For each of the 100 single rujswe calculate the

k’(r dyry.dy) estimator for the logarithms of the correlation integrals
11272 (10) Z;(r;)=log Cj(r;) and their estimated standard deviations
Un(ry,dy)Un(rz,dz) oi(r;). The average of the standard deviations is denoted
o (r;). The sample standard deviation of tAgr;) is de-
This covariance matrix is the basis for a least squares fit. Theoted S;(Z). This is the statistical fluctuation of thg(r;)
errors in the model parametersandh will follow from Eq. due to the limited data sets. In Fig. 3 the valuesS¢Z) are
(4). compared with the uncorrected values proportiondp tand

Vl(rlvdlervdZ):
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TABLE |. Fraction veJ; in different radius regions and cor-
rected and uncorrected estimators .ﬂq)r(H'enon system

N=1000 N=1000 N=10000 N=10000

Radius region rq5—ro5 ro5— I35 ri5—ro5 Io5— 35
Uncorrected 0.99 0.95 0.98 0.98
Corrected 0.93 0.93 0.96 0.96

estimated variance

dard Grassberger-Procac¢@P) algorithm yields 1.2112]].
The standard deviation of the 100 runsS&) ;5 ,5=0.0113
and S(v),5 35=0.0077. This has to be compared with the
mean of the estimated variance terms. These are
0 1525=0.0120 andr,s 55= 0.0081 for the corrected estima-
e tor. The values for the variance are, in both scaling regions,
16 18 20 22 24 26 28 30 32 34 very close. However, this procedure has its drawbacks. The
radius estimated values are the mean over 100 runs. Although they
are a very good approximation of the statistical error for the
correlation dimension, we are interested in the behavior of
the estimate based on single runs. Therefore, we calculate for
each single run a 95%-confidence interval given by
mated standard deviation. We do not know the real value of
v; therefore, we use the meanof all 100 ;’i as the asymp-
totic value of the correlation dimension. Then we count the
number of times that the lies in our individual interval; .
If the calculated estimates for the varianceiofire reason-
able, we expect the meanto lie in these confidence inter-
vals 95 times. Table | shows these probabilities for two ra-
dius regionsr,s—r,s and r,s—rg5 and for runs based on
1 000 and 10 000 points.

As we can see, the uncorrected values have a probability
for v_er that is very close to 100% because the estimated
ETE 0 55 54 56 98 50 30 54 confidence intervals); are too pessimistic, i.e., too large.
) radius This is especially obvious fdl= 1000 and small radii. The
corrected values, on the other hand, show very good agree-
ment with the 95% level forN=10000. For the case
N=1000, the observed values of 93% must be accepted from
a statistical viewpoint. We conclude th@r N=10 000 the
estimated confidence interval will include the average value
- of v with a probability of 96%, i.e., the estimated confidence
with the corrected estimators, the correction term b&ng interval of a single run well represents the fluctuation in the
Additionally we give the 95%-confidence region hundred independeri; . It is therefore possible to give an

Si(Z2) =1.960[S(2)]. Figure 3 shows clearly that the calcu- error estimate and a confidence interval for the correlation
lated estimators for the variance of édr;) are very close dimension.

to the variation between the 100 values of@yfr;), which
is caused by the statistical uncertainty due to the limited data
length. On the average, the corrected val(teangles are ) ]
closer to the sample standard deviation, and except for a few The same procedure that was applied to a discrete map
radii, all lie in the 95%-confidence interval. This is not the Will now be extended to a time-continuous system, the
case for the uncorrected values, which are too large, espéOrenz equations. By applying the same procedure as in
cially for small radii, and do not lie in the error interval. This Fig. 2 we chooset=20. The 100 independent runs are
effect is naturally more obvious for the calculations based ofgmbedded in a six-dimensional embedding space. Then the
only 1000 points. We derive from this that the estimateds@me procedure as for the hien data is repeated. Again we
variance terms are able to describe the statistical fluctuatiophoW in Fig. 4 the sample standard deviat§(Z) of the
of the correlation integral and that the introduced correctiont00Z;(r;), together with the uncorrected values correspond-
term is necessary to give a good estimate. ing to P and theQ corrected by estimators. The radius re-
We now come to the error estimates for the correlationgion for the radii is nowr;, with i=15,...,30(r;5=0.0016
dimension, i.e., the slope of the correlation integrals. Theand r;;=0.025. The results show that the method also
average dimension for the two scaling regions isyields good error estimates for the variance of the correlation
v 15.5= 1.194 andv,s 3= 1.208 for 10 000 point§a stan-  integral for the Lorenz system.

E

estimated variance

FIG. 3. (@) Sample variances (line), uncorrected covariance
(circles, and corrected covarianctiangles for 10 000 points(b)
Same aga) for 1000 points(Henon).

2. Lorenz system
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r20_ r30 and I’30— I’40, N=1 000

Again the corrected values for 10 000 points are in very
good agreement with the 95% level, i.es J; in 95% of the
100 runs, which corresponds very well to the 95%-
confidence level ofl;. The uncorrected values result in a
probability of v J;, which is too high because the respec-
tive confidence interval is too large.

To conclude, the method described is capable of giving
good estimates of the statistical fluctuation of the correlation
integral and the correlation dimension for both théenbie
system and the Lorenz system. It especially allows confi-
dence bounds for the estimated values.

estimated variance

B. Influence of noise

To determine the influence of noise, we use a model that
is a slight modification of Eq(3). For pure random dat#3)
radius can be expanded as follows. Given that-x’|| denotes the
maximum norm ofx—x’, then C(r,d) equals E(r,1)]°
such that

E

logC(r,d)=d w4[logr +O(logr)] asr—0, (12)

where v; denotes the correlation dimension of the distribu-
tion u, of x; ; see[13]. The equations above can be combined
in the following linear model of loG(r,d):

estimated variance

logC(r,d)=v logr —hd+ v,d logr +C’ + &’ (r,d). 12

The influence of random behavior is how measured by the
term ;. For ;=0 the interpretation isao noise v;#0 means
presence of noisélo fit all parameters ii12), especially to
determine the entropy terin, we calculate the covariance
: matrix  for the Ha&on system for radius
265594 98 58 50 57 34 36 38 40 ri5=0.001...,r»5=0.011 and dimensiord=4,...,7. Only
(b) radius single runs of 10 000 points are performed. We compare two
situations: no noise and 1% noise added after the iteration
FIG. 4. (a) Sample variancés (line), uncorrected covariance (me‘?‘sureme“t noiseThe “noise” was added as uniform
(circles, and corrected covarianctiangles for 10 000 points(b) distributed ra”d"”? numbers. . . N
Same aga) for 1000 points(Loren?). For the case Wlthou_t noise, we find thqt!s not S|gn|f|-
cantly different from Q(interpretation: no noige The inter-

o . . .
Again we determine the estimated slope of the 100 run vals denote the 95%-confidence region for the given values.

The average dimension for the two radius regions éNe find thatr,e[~0.013,0.024 Since the value for, is

V1525 2.084+ 0.053 andvy a¢=2.067=0.024 for 10 000 not different from zero, we exclude, from the model. The

. : ) respective confidence intervals after that are[1.077,
points(a standard GP algorithm yields 2.082]). The mean : o
of the estimated variance for the slopedigs ,s—0.057 and 1.188 andh [0.277,0.313]. Note especially the possibility

— . ; ... _,0f testing the null hypothesis:H'is different from 0.”
]ﬁlf 2030=0.023. This is in good agreement with the statistical For tr?e case of i/& measurement noise, the intervals are
uctuation. !

To test the estimates for single runs, we again investigaté}e[_0'216’0'22ali he[2.717,3.167], and »,&[0.531,
the 95%-confidence interval ‘Jj:[;/j_ 1_96&1_(1}), .631. v, is clearly different from zero. The entropy tefm

»,+1.967,(»)]. Table Il shows the probabilities oTer for 1S now larger than in the situation without noise, describing

. . - . - the higher information production of the system in the pres-
two radius regionsrs—rzs and rao— o N=10 000, and ence of noise. However, it should be noted that the model is

not able to distinguish between the entropy produced by the
noise and the entropy produced by the deterministic system.
In the casey;#0, there is no proper interpretation lofas a
possible entropy. The detection gf#0 is an indication that
logCy(r,d) follows the model assumptiofiLl). Since the

TABLE II. Fraction ve J; in different radius regions and cor-
rected and uncorrected estimators ka)r(Lorenz system

N=1000 N=1000 N=10000 N=10000

Radius region ry—ray rag=ra 15— I25 F0— 30 situation in(11) is produced by random behavior, one can
Uncorrected 0.97 0.98 1.00 0.98 therefore argue that the dependency ofdqér,d) on log
Corrected 0.92 0.93 0.95 0.95 andd is produced by some sort of random distribution in the

data.
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We conclude that the method described above is capablerror and provides the basis for additional tests, e.g., detec-
of detecting even a moderate level of random behaviotion of noise or testing whether the entropy is zero. Also, a
(noise in the data. Furthermore, there is the possibility oftest on linearity of the mod¢li4] can be performed using a
testing the assumptionH'is different from 0.” X test based on the least squares fit. Such a test is extremely
sensitive to even moderate nonlinearities and distinguishes
between systematic and statistical erfdf]. Restrictively,

. o _ . we note that by “systematic” we mean the error in the
We present a method to determine the statistical precisiopodel assumption. We do not address geometric effasis

of the correlation integral and the correlation dimension.q; other sources of error.

Compared to other approaches prowdlng Confldenqe Inter- Finally, we want to emphasize that the procedure is ca-
vals (e.g.,[1,2]), we neither need parametric assumptions orpaple of analyzing experimental data. As we have shown for
the dynamical system nor very large sample sizes to obtaithe | orenz system, our approach gives good results and pro-

reasonable estimates. , _ vides the possibility of determining a confidence interval for
The algorithm is easy to implement and requires onlyihe estimated quantities.

moderate modifications to an existing standard Grassberger- 1o conclude, we have presented a tool to estimate the

Proccacia approach. The main difference lies in the addistatistical error of the correlation integrals and the respective
tional terms ofQ. These can be determined by a separatgjimension for a single data set of moderate length. It pro-

We have shown that the results for a single run well repygg) for the experimentalist.

resent the error in calculating 100 independent samples of
the same system. The 95%-confidence interval, both for the
correlation dimension and for the correlation integral itself,
gives reliable bounds for the statistical error. Therefore, the We wish to thank Professor Dr. W. Kreische for his en-
method presented is a good tool to determine the statistica@louraging support.

V. CONCLUSION
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