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We discuss the statistical error in the calculation of the sample correlation integral from a finite sample of
points. For this purpose we introduce an estimator of the covariance matrix of these estimators. The application
of the method is described and it is shown that only small modifications to a standard Grassberger-Procaccia
algorithm are necessary. Testing the method with 100 independent runs of the He´non system, we show that the
errors obtained for the correlation integrals are in good accordance with the sample error. These results are
extended to the application to time-continuous systems, in our case the Lorenz system.

PACS number~s!: 02.50.2r, 07.05.Kf

I. INTRODUCTION

The calculation of correlation dimensions via the sample
correlation integral has gained widespread attention over the
last decade. However, little is known about the error of the
obtained quantities. Our goal is to provide reasonable confi-
dence intervals by a generalized least squares method. We
wish to emphasize that we deal with the statistical error of
the correlation integral only. Although by doing this we con-
sider error sources such as time correlation and lack of data
points, other sources of error, such as edge effects, are not
involved.

There have been previous attempts to give error estimates
@1–3#, but unfortunately these methods normally require a
very large data set, or multiple realizations of a system. In
practice, it is often not possible to meet these conditions. A
system may not be stationary over a long time, or only a
limited sample of information on the system may be avail-
able. Therefore, we wish to predict the confidence interval
for the dimension estimate for a single limited data set.

In the second section, we describe the practical imple-
mentation of an algorithm to estimate the covariance matrix
of the correlation integral on the basis of the pointwise cor-
relation integrals. Only a moderate modification of the stan-
dard Grassberger-Proccacia algorithm@4# is necessary to ob-
tain reasonable error estimates for the correlation integral
and the dimension estimates, respectively.

The third section includes a test on numerically simulated
data. At first, we produced 100 independent runs of the
Hénon system, each containing 10 000 points~and a shorter
version of 1000 points!, and calculated the correlation inte-
gral, the correlation dimension, and the variance, respec-
tively. Then we compared the variance of the 100 indepen-
dent results with the variance estimated for a single run. The
same procedure is then applied to the Lorenz system, i.e., a
time-continuous system. We conclude that it is possible to
obtain reasonable error estimates and confidence intervals for
the correlation integrals and dimension.

II. ESTIMATION OF CORRELATION DIMENSION

The outline of the problem of finding statistical error es-
timates for the correlation dimension is as follows. It is a

common technique to derive error estimates for the fit pro-
cedure, if the errors for the underlying data points are
known; see, e.g.,@5#. These data points in our case are the
sample correlation integrals CN(r ,d), which are estimated
from the given time series. If the underlying data are pro-
duced by a sufficiently mixing~i.e., chaotic! dynamical sys-
tem, then the difference between thesample correlation in-
tegral and the correlation integral of the distributionmd
~which would result from an infinitely long sample of the
attractor! is approximately normally distributed with zero
mean. The variance can be estimated on the basis of the
covariance matrix of theCN(r ,d). For a wide class of sys-
tems with exponentially decreasing correlation@6#, this result
can be proven rigorously. At this point it should be men-
tioned that normality of the error distribution is not a premise
of the least squares fit. Nonetheless, the key to error estima-
tion of thecorrelation dimensionis an understanding of the
variance of theCN(r ,d), which is given by the covariance
matrix of CN(r ,d).

First, we review the standard procedure to obtain a dimen-
sion estimate@4#. In general, we use a sample of an attractor
A, which is produced by an embedding procedure. Given a
scalar time series (x1 ,x2 ,...), this is typically achieved by
the Takens delay method@7#,

xI i5~xi ,xi1t ,...,xi1~d21!t!PRd,

wheret is the so-called delay time andd denotes the embed-
ding dimension.

Geometric and dynamical information of the distribution
md can be derived from the correlation integral

Cm~r ,d!:5E E h~xI ,xI 8!dmd~xI !dmd~xI 8!, ~1!

whereh(xI ,xI 8)5u(ixI 2xI 8i2r ) andu is the Heaviside func-
tion. ixI 2xI 8i denotes the Euclidian~or any other suitable!
distance ofxI and xI 8. Quantities given by Eq.~1! are esti-
mated by

CN~r ,d!5
1

N~N21! (
i51

N

(
j51
jÞ i

N

h~xI i ,xI j !. ~2!
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For the relation ofC(r ,d):5limN→`CN(r ,d) to r and d,
Grassberger and Procaccia@8# found that in many cases there
are real numbersn.0 and K2.0 such that C(r ,d)
'r n exp2dtK2 as r→0 andd→`, leading to

logC~r ,d!5n logr2hd1C1d~r ,d!; ~3!

n is called the correlation dimension,h is an entropylike
quantity related toK2 , C is a constant term, andd(r ,d) is a
~hopefully small! nonlinear remainder. This model, although
appropriate ifixI 2xI 8i , denotes the maximum norm, leads in
the case of a Euclidean distance norm to improved conver-
gence forh by replacing logr with log(r/Ad) @9#.

Fitting a model~3! to given data points~2! is typically
solved by a least squares fit. This procedure not only pro-
vides estimates for the parametersn, h, andC but also gives
estimates for the variance of the fitted parameters:

var~n,h,C!5@~MtM !21Mt#V@~MtM !21Mt# t. ~4!

Here the matrixV denotes the covariance matrix of the loga-
rithmic correlation integrals, andM5~log rI ,2dI ,1I ! is fre-
quently called thedesign matrix. To obtain error estimates
for the correlation dimensionn and the entropy termh, we
have to find an estimator for the covariance matrixV.

Finding an estimator for the covariance of logCN(r ,d) is
a standard procedure of statistics. At this point we want to
give the result~for details see@10#!. The estimator for the
covariance of the correlation integral is given in terms of the
two matricesP̂ andQ̂:

K̂5@114~112t !N21#4N21P̂2N22Q̂. ~5!

In the next section, we describe the practical calculation of
the matricesP̂ andQ̂. The relation betweenV in Eq. ~4! and
K̂ in Eq. ~5! is given in Eq.~10!.

III. IMPLEMENTATION OF THE METHOD

The basis of the estimation of the correlation integral
Cm(r ,d) @Eq. ~1!# is thesample correlation integral CN(r ,d)
@Eq. ~2!#. If the underlying system possesses a nonvanishing
time correlation, the termCN(r ,d) has to be corrected by
excluding pairs (i , j ) that are closer in time than a specific
time t. This correction, which was first introduced by Theiler
@11#, leads to a modified version of the sample correlation
integral

UN~r ,d!5
1

~N22t !~N22t21! (
i51

N

(
j51

u j2 i u.2t

N

h~xI i ,xI j !.

~6!

Note that the second sum represents thepointwise correla-
tion integrals

BN~r ,d,i !5
1

N22t21 (
j51

u j2 i u.2t

N

h~xI i ,xI j !. ~7!

These pointwise correlation integrals will be the basis for the
estimation of the covariance matrix ofCm(r ,d). As de-
scribed in the preceding section, the estimatorK̂ includes the

yet unknown matricesP̂ and Q̂. P̂ especially can be de-
scribed easily byUN(r ,d) andBN(r ,d,i ):

P̂~r 1 ,d1 ,r 2 ,d2!

5 (
k52t

t
1

N2k (
i51

N2k

@BN~r 1 ,d1 ,i !BN~r 2 ,d2 ,i1k!

2UN~r 1 ,d1!UN~r 2 ,d2!#. ~8!

The notationr i , di illustrates the fact that we want to fit the
model~3! to a scaling region, which expands over a range of
radii r i , i51,...,sr , and embedding dimensionsdj ,
j51,...,sd , that have yet to be chosen. For example, a scal-
ing region over four dimensions with ten radii each will
leave us with a~40340! covariance matrix, and, respec-
tively, a ~40340! matrix for P̂.

As we mentioned earlier, the timet denotes a distance in
time after which pairs (xI i ,xI j ) are independent foru i2 j u.t.
The second sum in Eq.~8! is therefore some sort of ‘‘corre-
lation term’’ between the pointwise correlation integrals
BN(r 1 ,d1 ,i ) and shifted pointwise correlation integrals
BN(r 1 ,d1 ,i1t). It takes the form of an autocorrelation func-
tion of theBN(r ,d,i ). Here again the importance of termt
becomes obvious. For a reasonable estimate of the covari-
ance matrix, it is necessary to sum up all the right-hand sum
terms in~8!, which have not yet saturated to zero. With in-
creasing time distancek, however, these terms will become
smaller and smaller, which justifies the fixing of a ‘‘cutoff’’
time t. In practice the ‘‘correlation term’’ may oscillate with
decreasing amplitude around zero for a long time. However,
we observe that the partial sumP̂(r 1 ,d1 ,r 2 ,d2) will
converge faster because of the decreasing amplitude of the
right-hand sum ( i51

N2k[BN(r 1 ,d1 ,i )BN(r 2 ,d2 ,i1k)
2UN(r 1 ,d1)UN(r 2 ,d2)]. The matrixP̂ therefore represents
the sum over the ‘‘correlation term’’ of the pointwise corre-
lation integrals foruku<t, while all other termsuku.t do not
significantly change the sum~8!. To conclude, the calcula-
tion of P̂ is straightforward. It consists simply in the evalu-
ation of the pointwise correlation integrals and the execution
of sum ~8!.

The still missing correction termQ̂ can be estimated by

Q̂~r 1 ,d1 ,r 2 ,d2!5
1

p̃~N,t ! (
i , j51

u j2 i u.3t

N

(
p,q52t

t

@h~r1 ,d1!

3~xI i ,xI j !h
~r2 ,d2!~xI i1p ,xI j1q!

2UN~r 1 ,d1!UN~r 2 ,d2!#, ~9!

wherep̃(N,t)5(N23t21)(N23t) denotes the number of
all relevant pairs in~9!. We concentrate on the explanation of
the diagonal terms in~9!. Again, we concentrate on the right-
hand sum.Q̂(r 1 ,d1 ,r 1 ,d1) measures the joint probability
that if uxI i2xI j u is less thanr 1 , then also the distance
uxI i1p2xI j1qu is less thanr 1 . In the case of a dynamical sys-
tem, the pointi11 is the ‘‘next’’ point on the trajectory; i.e.,
if the pair (xI i ,xI j ) is close, it is likely that also the respective
‘‘neighbors’’ on the trajectory (xI i11,xI j11) are also close to-
gether. The exact behavior is for the diagonal elementsp5q,
described by the Lyapunov exponents. The restriction on the
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diagonal terms of ~9! makes it easy to evaluate
Q̂(r 1 ,d1 ,r 1 ,d1). ~The covariance matrix that is obtained by
that procedure has the form ofK̂ on the diagonal and follows
the structure ofP̂ everywhere else. It is denotedK̂ 8.! When-
ever a pair (xI i ,xI j ) is found to be closer thanr , i.e., whenever
it will be counted in the original calculation ofBN(r ,d,i ),
the ‘‘surrounding’’ (xI i1p ,xI i1q) must be searched for pairs
that fulfill the conditionuxI i1p2xI j1qu,r . The described situ-
ation is illustrated in Fig. 1. This is a dynamical interpreta-
tion of P̂ and Q̂, but their justification is entirely based on
statistical considerations@10#.

We have now obtained estimates forP̂ andQ̂ by making
use of the standard procedure to estimate the pointwise cor-
relation integralBN(r ,d,i ). Finally, we have to get the cova-
riance matrix of the logarithm ofCN(r ,d). A Taylor expan-
sion leads to the covariance matrix of log[CN(r ,d)],

V̂8~r 1 ,d1 ,r 2 ,d2!5
K̂8~r 1 ,d1 ,r 2 ,d2!

UN~r 1 ,d1!UN~r 2 ,d2!
. ~10!

This covariance matrix is the basis for a least squares fit. The
errors in the model parametersn andh will follow from Eq.
~4!.

IV. RESULTS

A. Test with independent realizations

We now come to numerical tests of the method. First we
want to test the procedure by comparing the results with a
sample of 100 independent runs of two test systems. These
are the He´non system~standard parametersa51.4 and
b50.3! and the Lorenz system~standard parametersS510,
R528, andb5 8

3 !. Our goal is to compare the mean and
standard deviations of the 100 runs with the estimated values
obtained from the individual runs. At first we use noise-free
data.

1. Hénon system

For the Hénon system we compute the sum
P̂(r 1 ,d1 ,r 2 ,d2) @see Eq.~8!# in order to find a suitable value
for t. As seen in Fig. 2, the correlation is practically zero
from t510 on. Also, the sum of the correlation terms satu-
rates to a fixed value. This is not surprising, as the underly-
ing system shows no longtime correlations, i.e., the same
behavior can be observed for the autocorrelation of the time
series itself.

Then we calculate the correlation integral
P̂(r 1 ,d1 ,r 2 ,d2) and Q̂(r 1 ,d1 ,r 2 ,d1) ~which we from now
on denote simplyP̂ and Q̂! with N510 000 andN51 000
and r i for i515 to 35 ~giving an effective range of
r 1550.001 tor 3550.067 in units of global attractor size! for
each individual run. The embedding dimension for the 100
runs is fixed to 4. Since the dimensiond is now a fixed
parameter, the termhd in our model is included in the con-
stantC. For each of the 100 single runsj , we calculate the
estimator for the logarithms of the correlation integrals
Zj (r i)5logCj (r i) and their estimated standard deviations
ŝ j (r i). The average of the standard deviations is denoted
s (̄r i). The sample standard deviation of theZj (r i) is de-
notedSi(Z). This is the statistical fluctuation of theZj (r i)
due to the limited data sets. In Fig. 3 the values forSi(Z) are
compared with the uncorrected values proportional toP̂ and

FIG. 1. ~a! Points (xI i ,xI j ) on different trajectories, within radius
r . Respective neighborhood ofxI i , j : circles, points that contribute to
the correction term; triangles, points that have a distance greater
than r and therefore do not contribute to the correction term.~b!
Lines indicate the pairs that contribute to the correction term within
the chosen ‘‘cutoff’’ timet.

FIG. 2. Above: covariance( i51
N2kH 1,i

(u)H 1,i1k
(u) for radius 25. Be-

low: partial sumP̂u,u for radius 25.
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with the corrected estimators, the correction term beingQ̂.
Additionally we give the 95%-confidence region
Si(Z)61.96s[Si(Z)]. Figure 3 shows clearly that the calcu-
lated estimators for the variance of logCj (r i) are very close
to the variation between the 100 values of logCj (r i), which
is caused by the statistical uncertainty due to the limited data
length. On the average, the corrected values~triangles! are
closer to the sample standard deviation, and except for a few
radii, all lie in the 95%-confidence interval. This is not the
case for the uncorrected values, which are too large, espe-
cially for small radii, and do not lie in the error interval. This
effect is naturally more obvious for the calculations based on
only 1000 points. We derive from this that the estimated
variance terms are able to describe the statistical fluctuation
of the correlation integral and that the introduced correction
term is necessary to give a good estimate.

We now come to the error estimates for the correlation
dimension, i.e., the slope of the correlation integrals. The
average dimension for the two scaling regions is
n 1̄5,2551.194 andn̄25,3551.208 for 10 000 points@a stan-

dard Grassberger-Procaccia~GP! algorithm yields 1.21@12##.
The standard deviation of the 100 runs isS(n)15,2550.0113
and S(n)25,3550.0077. This has to be compared with the
mean of the estimated variance terms. These are
s 1̄5,2550.0120 ands̄25,3550.0081 for the corrected estima-
tor. The values for the variance are, in both scaling regions,
very close. However, this procedure has its drawbacks. The
estimated values are the mean over 100 runs. Although they
are a very good approximation of the statistical error for the
correlation dimension, we are interested in the behavior of
the estimate based on single runs. Therefore, we calculate for
each single run a 95%-confidence interval given by
Jj5[ n̂ j21.96ŝ j (n), n̂ j11.96ŝ j (n)], with ŝ j (n) the esti-
mated standard deviation. We do not know the real value of
n; therefore, we use the meann̄ of all 100 n̂ j as the asymp-
totic value of the correlation dimension. Then we count the
number of times that then̄ lies in our individual intervalJj .
If the calculated estimates for the variance ofn̂ are reason-
able, we expect the meann̄ to lie in these confidence inter-
vals 95 times. Table I shows these probabilities for two ra-
dius regionsr 152r 25 and r 252r 35 and for runs based on
1 000 and 10 000 points.

As we can see, the uncorrected values have a probability
for n̄PJj that is very close to 100% because the estimated
confidence intervalsJj are too pessimistic, i.e., too large.
This is especially obvious forN51000 and small radii. The
corrected values, on the other hand, show very good agree-
ment with the 95% level forN510 000. For the case
N51000, the observed values of 93% must be accepted from
a statistical viewpoint. We conclude that~for N510 000! the
estimated confidence interval will include the average value
of n with a probability of 96%, i.e., the estimated confidence
interval of a single run well represents the fluctuation in the
hundred independentn̂ j . It is therefore possible to give an
error estimate and a confidence interval for the correlation
dimension.

2. Lorenz system

The same procedure that was applied to a discrete map
will now be extended to a time-continuous system, the
Lorenz equations. By applying the same procedure as in
Fig. 2 we chooset520. The 100 independent runs are
embedded in a six-dimensional embedding space. Then the
same procedure as for the He´non data is repeated. Again we
show in Fig. 4 the sample standard deviationSi(Z) of the
100Zj (r i), together with the uncorrected values correspond-
ing to P̂ and theQ̂ corrected by estimators. The radius re-
gion for the radii is nowr i , with i515,...,30~r 1550.0016
and r 3050.025!. The results show that the method also
yields good error estimates for the variance of the correlation
integral for the Lorenz system.

FIG. 3. ~a! Sample varianceS ~line!, uncorrected covariance
~circles!, and corrected covariance~triangles! for 10 000 points.~b!
Same as~a! for 1000 points~Hénon!.

TABLE I. Fraction n̄PJj in different radius regions and cor-
rected and uncorrected estimators forJj ~Hénon system!.

N51 000 N51 000 N510 000 N510 000

Radius region r 152r 25 r 252r 35 r 152r 25 r 252r 35
Uncorrected 0.99 0.95 0.98 0.98
Corrected 0.93 0.93 0.96 0.96

5834 53M. FRANK, G. KELLER, AND R. SPORER



Again we determine the estimated slope of the 100 runs.
The average dimension for the two radius regions is
n 1̄5,2552.08460.053 andn̄20,3052.06760.024 for 10 000
points~a standard GP algorithm yields 2.06@12#!. The mean
of the estimated variance for the slope iss̄15,2550.057 and
s 2̄0,3050.023. This is in good agreement with the statistical
fluctuation.

To test the estimates for single runs, we again investigate
the 95%-confidence interval Jj5[ n̂ j21.96ŝ j (n),
n̂ j11.96ŝ j (n)]. Table II shows the probabilities ofn̄PJj for
two radius regions,r 152r 25 and r 202r 30, N510 000, and

r 202r 30 and r 302r 40, N51 000.
Again the corrected values for 10 000 points are in very

good agreement with the 95% level, i.e.,n̄PJj in 95% of the
100 runs, which corresponds very well to the 95%-
confidence level ofJj . The uncorrected values result in a
probability of n̄PJj , which is too high because the respec-
tive confidence interval is too large.

To conclude, the method described is capable of giving
good estimates of the statistical fluctuation of the correlation
integral and the correlation dimension for both the He´non
system and the Lorenz system. It especially allows confi-
dence bounds for the estimated values.

B. Influence of noise

To determine the influence of noise, we use a model that
is a slight modification of Eq.~3!. For pure random data,~3!
can be expanded as follows. Given thatixI 2xI 8i denotes the
maximum norm ofxI 2xI 8, then C(r ,d) equals [C(r ,1)]d

such that

logC~r ,d!5d n1@ logr1O~ logr !# as r→0, ~11!

wheren1 denotes the correlation dimension of the distribu-
tionm1 of xi ; see@13#. The equations above can be combined
in the following linear model of logC(r ,d):

logC~r ,d!5n logr2hd1n1d logr1C81d8~r ,d!. ~12!

The influence of random behavior is now measured by the
termn1. Forn1'0 the interpretation isno noise; n1Þ0 means
presence of noise. To fit all parameters in~12!, especially to
determine the entropy termh, we calculate the covariance
matrix for the Hénon system for radius
r 1550.001,...,r 2550.011 and dimensiond54,...,7. Only
single runs of 10 000 points are performed. We compare two
situations: no noise and 1% noise added after the iteration
~measurement noise!. The ‘‘noise’’ was added as uniform
distributed random numbers.

For the case without noise, we find thatn1 is not signifi-
cantly different from 0~interpretation: no noise!. The inter-
vals denote the 95%-confidence region for the given values.
We find thatn1P@20.013,0.025#. Since the value forn1 is
not different from zero, we excluden1 from the model. The
respective confidence intervals after that arenP@1.077,
1.188# andhP[0.277,0.313]. Note especially the possibility
of testing the null hypothesis: ‘‘h is different from 0.’’

For the case of 1% measurement noise, the intervals are
nP@20.216,0.224#, hP[2.717,3.167], and n1P@0.531,
0.631#. n1 is clearly different from zero. The entropy termh
is now larger than in the situation without noise, describing
the higher information production of the system in the pres-
ence of noise. However, it should be noted that the model is
not able to distinguish between the entropy produced by the
noise and the entropy produced by the deterministic system.
In the casen1Þ0, there is no proper interpretation ofh as a
possible entropy. The detection ofn1Þ0 is an indication that
logCN(r ,d) follows the model assumption~11!. Since the
situation in ~11! is produced by random behavior, one can
therefore argue that the dependency of logCN(r ,d) on logr
andd is produced by some sort of random distribution in the
data.

FIG. 4. ~a! Sample varianceS ~line!, uncorrected covariance
~circles!, and corrected covariance~triangles! for 10 000 points.~b!
Same as~a! for 1000 points~Lorenz!.

TABLE II. Fraction n̄PJj in different radius regions and cor-
rected and uncorrected estimators forJj ~Lorenz system!.

N51 000 N51 000 N510 000 N510 000

Radius region r 202r 30 r 302r 40 r 152r 25 r 202r 30
Uncorrected 0.97 0.98 1.00 0.98
Corrected 0.92 0.93 0.95 0.95
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We conclude that the method described above is capable
of detecting even a moderate level of random behavior
~noise! in the data. Furthermore, there is the possibility of
testing the assumption ‘‘h is different from 0.’’

V. CONCLUSION

We present a method to determine the statistical precision
of the correlation integral and the correlation dimension.
Compared to other approaches providing confidence inter-
vals ~e.g.,@1,2#!, we neither need parametric assumptions on
the dynamical system nor very large sample sizes to obtain
reasonable estimates.

The algorithm is easy to implement and requires only
moderate modifications to an existing standard Grassberger-
Proccacia approach. The main difference lies in the addi-
tional terms ofQ̂. These can be determined by a separate
routine during calculation of the correlation integral.

We have shown that the results for a single run well rep-
resent the error in calculating 100 independent samples of
the same system. The 95%-confidence interval, both for the
correlation dimension and for the correlation integral itself,
gives reliable bounds for the statistical error. Therefore, the
method presented is a good tool to determine the statistical

error and provides the basis for additional tests, e.g., detec-
tion of noise or testing whether the entropy is zero. Also, a
test on linearity of the model@14# can be performed using a
x2 test based on the least squares fit. Such a test is extremely
sensitive to even moderate nonlinearities and distinguishes
between systematic and statistical error@10#. Restrictively,
we note that by ‘‘systematic’’ we mean the error in the
model assumption. We do not address geometric effects@15#
or other sources of error.

Finally, we want to emphasize that the procedure is ca-
pable of analyzing experimental data. As we have shown for
the Lorenz system, our approach gives good results and pro-
vides the possibility of determining a confidence interval for
the estimated quantities.

To conclude, we have presented a tool to estimate the
statistical error of the correlation integrals and the respective
dimension for a single data set of moderate length. It pro-
vides a wide range of applications and is therefore a good
tool for the experimentalist.
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